Add like
Add dislike
Add to saved papers

Potential urinary biomarkers of nephrotoxicity in cyclophosphamide-treated rats investigated by NMR-based metabolic profiling.

The anticancer-drug cyclophosphamide (CP) is known to have nephrotoxicity. The aim of this study was to identify urinary biomarkers indicating CP-induced nephrotoxicity. We investigated the urine metabolic profiles using nuclear magnetic resonance spectrometry of rats administered with single high-doses of CP (0, 30, and 100 mg/kg body weight) and daily low-doses over a 4-week period (0, 1, 3, and 10 mg/kg body weight). Among 18 identified urinary metabolites, 2-oxoglutarate, citrate, hippurate, formate, valine, and alanine for short-term and 2-oxoglutarate, citrate, hippurate, isoleucine, leucine, allantoin, valine, and lysine for long-term were selected as potential biomarkers. Pathway-enrichment analysis suggested that the urinary metabolism of CP is related to valine, leucine, and isoleucine biosynthesis; taurine and hypotaurine metabolism; glyoxylate and dicarboxylate metabolism; citrate cycle; and alanine, aspartate, and glutamate metabolism, with high pathway impact. The potential biomarkers obtained in this study could be used to monitor CP-induced nephrotoxicity relative to dose and treatment time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app