Add like
Add dislike
Add to saved papers

Integrating mechanisms of response and resistance against the tubulin binding agent Eribulin in preclinical models of osteosarcoma.

Oncotarget 2016 December 28
Osteosarcoma is the most frequently occurring bone cancer in children and adolescents. Unfortunately, treatment failures are common. Eribulin is a synthetic microtubule inhibitor that has demonstrated activity in preclinical osteosarcoma models. The effects of eribulin were evaluated in two human osteosarcoma cell lines as well as in eribulin-sensitive and -resistant osteosarcoma xenograft tumors of the Pediatric Preclinical Testing Program (PPTP) by characterizing cell viability, microtubule destabilization, mitotic arrest and mechanism of cell death. Eribulin demonstrated cytotoxic activity in vitro, through promotion of microtubule dynamic instability, arrest of cells in the G2/M phase, mitotic catastrophe and cell death. The microtubule-destabilizing protein stathmin-1 (STMN1) was coimmunoprecipitated with the cyclin-dependent kinase inhibitor p27 indicating that these cytoplasmic complexes can protect cells from the microtubule destabilizing effect of eribulin. Increased tumoral expression of P-glycoprotein (P-gp) and TUBB3 were also associated with lower drug sensitivity. In summary, eribulin successfully blocked cells in G2/M phase but interfered with mitochondria activity to inhibit proteins involved in apoptosis. Understanding the complex and inter-related mechanisms involved in the overall drug response to eribulin may help in the design of therapeutic strategies that enhance drug activity and improve benefits of eribulin in pediatric patients with osteosarcoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app