Add like
Add dislike
Add to saved papers

Dielectric effects on the ion distribution near a Janus colloid.

Soft Matter 2016 November 29
Spherical Janus colloids, particles with different surface properties on their two hemispheres, are generally heterogeneous in permittivity. This dielectric heterogeneity may affect their behavior in electrolytes and external electric fields, but is typically not taken into account in computational studies. We apply the iterative dielectric solver developed by Barros and Luijten [Phys. Rev. Lett., 2014, 113, 017801] in combination with preconditioning techniques that can accurately and efficiently compute the polarization of dielectrically anisotropic particles. Employing this approach, we systematically study the ion distribution around neutral and charged Janus particles with various permittivities, immersed in symmetric and asymmetric electrolytes. We demonstrate that neutral Janus colloids may carry a nonzero dipole moment in asymmetric salts. For charged Janus colloids, dielectric effects can substantially influence the electric double layer. These findings also have implications for other dielectrically anisotropic entities, such as proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app