Journal Article
Review
Add like
Add dislike
Add to saved papers

Mechanistic Insights into Pathological Changes in the Diabetic Retina: Implications for Targeting Diabetic Retinopathy.

Increasing evidence points to inflammation as one of the key players in diabetes-mediating adverse effects to the neuronal and vascular components of the retina. Sustained inflammation induces biochemical and molecular changes, ultimately contributing to retinal complications and vision loss in diabetic retinopathy. In this review, we describe changes involving metabolic abnormalities secondary to hyperglycemia, oxidative stress, and activation of transcription factors, together with neuroglial alterations in the diabetic retina. Changes in biochemical pathways and how they promote pathophysiologic developments involving proinflammatory cytokines, chemokines, and adhesion molecules are discussed. Inflammation-mediated leukostasis, retinal ischemia, and neovascularization and their contribution to pathological and clinical stages leading to vision loss in diabetic retinopathy (DR) are highlighted. In addition, potential treatment strategies involving fibrates, connexins, neuroprotectants, photobiomodulation, and anti-inflammatory agents against the development and progression of DR lesions are reviewed. The importance of appropriate animal models for testing novel strategies against DR lesions is discussed; in particular, a novel nonhuman primate model of DR and the suitability of rodent models are weighed. The purpose of this review is to highlight our current understanding of the pathogenesis of DR and to summarize recent advances using novel approaches or targets to investigate and inhibit the retinopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app