Add like
Add dislike
Add to saved papers

Nanofibers containing tetracycline/β-cyclodextrin: Physico-chemical characterization and antimicrobial evaluation.

Carbohydrate Polymers 2017 January 21
This study aimed to compare two nanofiber drug delivery systems that were prepared with an electrospun process and have the potential to serve as adjuvants for the treatment of periodontal disease. The first system was composed of polycaprolactone loaded with tetracycline (TCN) and the second was composed of polycaprolactone loaded with tetracycline/β-cyclodextrin (TCN:BCD). An antimicrobial diffusion test was performed for each of these sets of nanofibers with the microorganisms, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, both of which contribute to periodontal disease. In vitro release profiles were also obtained, and the nanofibers were characterized by thermal analysis, x-ray powder diffraction, infrared absorption spectroscopy, and scanning electron microscopy. Profiles of the TCN and TCN:BCD nanofibers showed that drug release occurred for up to 14days. However, the TCN:BCD nanofibers appeared to better protect and enhance the biological absorption of TCN due to the formation of a TCN:BCD inclusion complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app