Add like
Add dislike
Add to saved papers

Molecular design of cytocompatible amphiphilic redox-active polymers for efficient extracellular electron transfer.

For electrochemical regulations of the intracellular metabolisms, lipophilic electron mediators with cell membrane permeability have been conventionally used. We have recently developed amphiphilic, cell-membrane permeable polymer composed of hydrophilic 2-methacryloyloxyethyl phosphorylcholine and hydrophobic redox-active units as a new category of electron mediator. The advantage of the redox active polymer is that we can obtain appropriate molecules in a synthetic bottom-up manner. Here we report that the rate of the extracellular electron transfer (EET) through the redox active polymer can be regulated by sophisticated molecular design of the polymers. It was also shown that the cellular metabolism of yeast Saccharomyces cerevisiae was regulated by using the polymer with the highest EET rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app