Add like
Add dislike
Add to saved papers

Cucurbitacin-I induces hypertrophy in H9c2 cardiomyoblasts through activation of autophagy via MEK/ERK1/2 signaling pathway.

Toxicology Letters 2016 December 16
Cucurbitacin-I, a natural triterpenoids initially identified in medicinal plants, shows a potent anticancer effect on a variety of cancer cell types. Nevertheless, the cardiotoxicity of cucurbitacin-I has not heretofore been reported. In this study, the mechanisms of cucurbitacin-I-induced cardiotoxicity were examined by investigating the role of MAPK-autophagy-dependent pathways. After being treated with 0.1-0.3μM cucurbitacin-I for 48h, H9c2 cells showed a gradual decrease in the cell viabilities, a gradual increase in cell size, and mRNA expression of ANP and BNP (cardiac hypertrophic markers). Cucurbitacin-I concentration-dependent apoptosis of H9c2 cells was also observed. The increased apoptosis of H9c2 cells was paralleling with the gradually strong autophagy levels. Furthermore, an autophagy inhibitor, 3-MA, was used to block the cucurbitacin-I-stirred autophagy, and then the hypertrophy and apoptosis induced by 0.3μM cucurbitacin-I were significantly attenuated. In addition, cucurbitacin-I exposure also activated the MAPK signaling pathways, including ERK1/2, JNK, and p38 kinases. Interestingly, only the ERK inhibitor U0126, but not the JNK inhibitor SP600125 and p38 MAPK inhibitor SB203580, weakened the induction of 0.3μM cucurbitacin-I in hypertrophy, autophagy and apoptosis. Our findings suggest that cucurbitacin-I can increase the autophagy levels of H9c2 cells, most likely, through the activation of an ERK-autophagy dependent pathway, which results in the hypertrophy and apoptosis of cardiomyocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app