Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Diffusion-mediated 129 Xe gas depolarization in magnetic field gradients during continuous-flow optical pumping.

The production of large volumes of highly polarized noble gases like helium and xenon is vital to applications of magnetic resonance imaging and spectroscopy with hyperpolarized (HP) gas in humans. In the past ten years, 129 Xe has become the gas of choice due to its lower cost, higher availability, relatively high tissue solubility, and wide range of chemical shift values. Though near unity levels of xenon polarization have been achieved in-cell using stopped-flow Spin Exchange Optical Pumping (SEOP), these levels are currently unmatched by continuous-flow SEOP methods. Among the various mechanisms that cause xenon relaxation, such as persistent and transient xenon dimers, wall collisions, and interactions with oxygen, relaxation due to diffusion in magnetic field gradients, caused by rapidly changing magnetic field strength and direction, is often ignored. However, during continuous-flow SEOP production, magnetic field gradients may not have a negligible contribution, especially considering that this methodology requires the combined use of magnets with very different characteristics (low field for spin exchange optical pumping and high field for the reduction of xenon depolarization in the solid state during the freeze out phase) that, when placed together, inevitably create magnetic field gradients along the gas-flow-path. Here, a combination of finite element analysis and Monte Carlo simulations is used to determine the effect of such magnetic field gradients on xenon gas polarization with applications to a specific, continuous-flow hyperpolarization system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app