Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Evolvability Tradeoffs in Emergent Digital Replicators.

The role of historical contingency in the origin of life is one of the great unknowns in modern science. Only one example of life exists-one that proceeded from a single self-replicating organism (or a set of replicating hypercycles) to the vast complexity we see today in Earth's biosphere. We know that emergent life has the potential to evolve great increases in complexity, but it is unknown if evolvability is automatic given any self-replicating organism. At the same time, it is difficult to test such questions in biochemical systems. Laboratory studies with RNA replicators have had some success with exploring the capacities of simple self-replicators, but these experiments are still limited in both capabilities and scope. Here, we use the digital evolution system Avida to explore the interplay between emergent replicators (rare randomly assembled self-replicators) and evolvability. We find that we can classify fixed-length emergent replicators in Avida into two classes based on functional analysis. One class is more evolvable in the sense of optimizing the replicators' replication abilities. However, the other class is more evolvable in the sense of acquiring evolutionary innovations. We tie this tradeoff in evolvability to the structure of the respective classes' replication machinery, and speculate on the relevance of these results to biochemical replicators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app