Read by QxMD icon Read

Artificial Life

Erwan Bigan, Pierre Plateau
One proposed scenario for the emergence of biochemical oscillations is that they may have provided the basic mechanism behind cellular self-replication by growth and division. However, alternative scenarios not requiring any chemical oscillation have also been proposed. Each of the various protocell models proposed to support one or another scenario comes with its own set of specific assumptions, which makes it difficult to ascertain whether chemical oscillations are required or not for cellular self-replication...
2017: Artificial Life
Matteo Monti, Steen Rasmussen
We summarize the results and perspectives from a companion article, where we presented and evaluated an alternative architecture for data storage in distributed networks. We name the bio-inspired architecture RAIN, and it offers file storage service that, in contrast with current centralized cloud storage, has privacy by design, is open source, is more secure, is scalable, is more sustainable, has community ownership, is inexpensive, and is potentially faster, more efficient, and more reliable. We propose that a RAIN-style architecture could form the backbone of the Internet of Things that likely will integrate multiple current and future infrastructures ranging from online services and cryptocurrency to parts of government administration...
2017: Artificial Life
Larry Bull
This article suggests that the fundamental haploid-diploid cycle of eukaryotic sex exploits a rudimentary form of the Baldwin effect. With this explanation for the basic cycle, the other associated phenomena can be explained as evolution tuning the amount and frequency of learning experienced by an organism. Using the well-known NK model of fitness landscapes, it is shown that varying landscape ruggedness varies the benefit of the haploid-diploid cycle, whether based upon endomitosis or syngamy. The utility of pre-meiotic doubling and recombination during the cycle are also shown to vary with landscape ruggedness...
2017: Artificial Life
Jitka Čejková, Taisuke Banno, Martin M Hanczyc, František Štěpánek
Liquid droplets are very simple objects present in our everyday life. They are extremely important for many natural phenomena as well as for a broad variety of industrial processes. The conventional research areas in which the droplets are studied include physical chemistry, fluid mechanics, chemical engineering, materials science, and micro- and nanotechnology. Typical studies include phenomena such as condensation and droplet formation, evaporation of droplets, or wetting of surfaces. The present article reviews the recent literature that employs droplets as animated soft matter...
2017: Artificial Life
Miguel Gonzalez, Richard Watson, Seth Bullock
Social learning, defined as the imitation of behaviors performed by others, is recognized as a distinctive characteristic in humans and several other animal species. Previous work has claimed that the evolutionary fixation of social learning requires decision-making cognitive abilities that result in transmission bias (e.g., discriminatory imitation) and/or guided variation (e.g., adaptive modification of behaviors through individual learning). Here, we present and analyze a simple agent-based model that demonstrates that the transition from instinctive actuators (i...
2017: Artificial Life
Patrick Krauss, Holger Schulze, Claus Metzner
In Lévy walks (LWs), particles move with a fixed speed along straight line segments and turn in new directions after random time intervals that are distributed according to a power law. Such LWs are thought to be an advantageous foraging and search strategy for organisms. While complex nervous systems are certainly capable of producing such behavior, it is not clear at present how single-cell organisms can generate the long-term correlated control signals required for a LW. Here, we construct a biochemical reaction system that generates long-time correlated concentration fluctuations of a signaling substance, with a tunable fractional exponent of the autocorrelation function...
2017: Artificial Life
Philip Gerlee, David Basanta, Alexander R A Anderson
The importance of individual cells in a developing multicellular organism is well known, but precisely how the individual cellular characteristics of those cells collectively drive the emergence of robust, homeostatic structures is less well understood. For example, cell communication via a diffusible factor allows for information to travel across large distances within the population, and cell polarization makes it possible to form structures with a particular orientation, but how do these processes interact to produce a more robust and regulated structure? In this study we investigate the ability of cells with different cellular characteristics to grow and maintain homeostatic structures...
2017: Artificial Life
Gal A Kaminka, Rachel Spokoini-Stern, Yaniv Amir, Noa Agmon, Ido Bachelet
Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami...
2017: Artificial Life
David Buckingham, Josh Bongard
In some evolutionary robotics experiments, evolved robots are transferred from simulation to reality, while sensor/motor data flows back from reality to improve the next transferral. We envision a generalization of this approach: a simulation-to-reality pipeline. In this pipeline, increasingly embodied agents flow up through a sequence of increasingly physically realistic simulators, while data flows back down to improve the next transferral between neighboring simulators; physical reality is the last link in this chain...
2017: Artificial Life
John A Bullinaria
The idea that lifetime learning can have a significant effect on life history evolution has recently been explored using a series of artificial life simulations. These involved populations of competing individuals evolving by natural selection to learn to perform well on simplified abstract tasks, with the learning consisting of identifying regularities in their environment. In reality, there is more to learning than that type of direct individual experience, because it often includes a substantial degree of social learning that involves various forms of imitation of what other individuals have learned before them...
2017: Artificial Life
Massimo Lumaca, Giosuè Baggio
It has been proposed that languages evolve by adapting to the perceptual and cognitive constraints of the human brain, developing, in the course of cultural transmission, structural regularities that maximize or optimize learnability and ease of processing. To what extent would perceptual and cognitive constraints similarly affect the evolution of musical systems? We conducted an experiment on the cultural evolution of artificial melodic systems, using multi-generational signaling games as a laboratory model of cultural transmission...
2017: Artificial Life
Drew Blount, Peter Banda, Christof Teuscher, Darko Stefanovic
Inspired by natural biochemicals that perform complex information processing within living cells, we design and simulate a chemically implemented feedforward neural network, which learns by a novel chemical-reaction-based analogue of backpropagation. Our network is implemented in a simulated chemical system, where individual neurons are separated from each other by semipermeable cell-like membranes. Our compartmentalized, modular design allows a variety of network topologies to be constructed from the same building blocks...
2017: Artificial Life
B Greenbaum, A N Pargellis
Amoeba, a computer platform inspired by the Tierra system, is designed to study the generation of self-replicating sequences of machine operations (opcodes) from a prebiotic world initially populated by randomly selected opcodes. Point mutations drive opcode sequences to become more fit as they compete for memory and CPU time. Significant features of the Amoeba system include the lack of artificial encapsulation (there is no write protection) and a computationally universal opcode basis set. Amoeba now includes two additional features: pattern-based addressing and injecting entropy into the system...
2017: Artificial Life
Javier Vera
Traditionally, the formation of vocabularies has been studied by agent-based models (primarily, the naming game) in which random pairs of agents negotiate word-meaning associations at each discrete time step. This article proposes a first approximation to a novel question: To what extent is the negotiation of word-meaning associations influenced by the order in which agents interact? Automata networks provide the adequate mathematical framework to explore this question. Computer simulations suggest that on two-dimensional lattices the typical features of the formation of word-meaning associations are recovered under random schemes that update small fractions of the population at the same time; by contrast, if larger subsets of the population are updated, a periodic behavior may appear...
2017: Artificial Life
Vuk Vujovic, Andre Rosendo, Luzius Brodbeck, Fumiya Iida
Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world...
2017: Artificial Life
Rupert Young
Departing from the conventional view of the reasons for the behavior of living systems, this research presents a radical and unique view of that behavior, as the observed side effects of a hierarchical set of simple, continuous, and dynamic negative feedback control systems, by way of an experimental model implemented on a real-world autonomous robotic rover. Rather than generating specific output from input, the systems control their perceptual inputs by varying output. The variables controlled do not exist in the environment, but are entirely internal perceptions constructed as a result of the layout and connections of the neural architecture...
2017: Artificial Life
John Rieffel, Jean-Baptiste Mouret, Nicolas Bredeche, Evert Haasdijk
No abstract text is available yet for this article.
2017: Artificial Life
Richard J Preen, Larry Bull
Design mining is the use of computational intelligence techniques to iteratively search and model the attribute space of physical objects evaluated directly through rapid prototyping to meet given objectives. It enables the exploitation of novel materials and processes without formal models or complex simulation. In this article, we focus upon the coevolutionary nature of the design process when it is decomposed into concurrent sub-design-threads due to the overall complexity of the task. Using an abstract, tunable model of coevolution, we consider strategies to sample subthread designs for whole-system testing and how best to construct and use surrogate models within the coevolutionary scenario...
2017: Artificial Life
Andrés Faíña, Lars Toft Jacobsen, Sebastian Risi
Evolutionary robotics is challenged with some key problems that must be solved, or at least mitigated extensively, before it can fulfill some of its promises to deliver highly autonomous and adaptive robots. The reality gap and the ability to transfer phenotypes from simulation to reality constitute one such problem. Another lies in the embodiment of the evolutionary processes, which links to the first, but focuses on how evolution can act on real agents and occur independently from simulation, that is, going from being, as Eiben, Kernbach, & Haasdijk [2012, p...
2017: Artificial Life
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"