Journal Article
Review
Add like
Add dislike
Add to saved papers

Androgen synthesis in prostate cancer: do all roads lead to Rome?

The accumulation of high concentrations of signalling androgens within prostate tumours that progress despite use of androgen-deprivation therapy is a clinically important mechanism of the development of castration-resistant prostate cancer. In the past 5 years, data from a number of studies have increased our understanding of the enzymes and substrates involved in intratumoural androgen biosynthesis, and have implicated three competing pathways, which are likely to account for these observations. These pathways ('canonical', 'backdoor' and '5α-dione'), which can all ultimately generate the potent signalling androgen, dihydrotestosterone, involve many of the same enzymes, but differ in terms of substrate preference, reaction sequence and the organs and tissues in which they occur. For this reason, the relative importance of each pathway to the development and progression of prostate cancer remains controversial. In this Review, we describe the current understanding of androgen synthesis and the evidence for its role in castration resistance, and examine the evidence supporting and or rebutting the relevance of each pathway to patients with prostate cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app