Add like
Add dislike
Add to saved papers

Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion.

This study aims at providing basic information for the explosion-protecting technology in the gasoline storage and transportation process. Experiments were conducted to investigate the explosion parameters under different gasoline vapor concentrations (0.92-2.40%), temperatures (283-343K), relative humidities (35-98%), and oxygen concentrations (12.66-20.32%) in a 20L spherical vessel. Results show that both the maximum overpressure and the rate of pressure rise are quadratic functions of initial gasoline vapor concentration. At constant initial concentration, the maximum overpressure and the rate of pressure rise decrease linearly with the increase of temperature or humidity. When using nitrogen as the dilution, the maximum overpressure and rate of pressure rise respectively show a negative exponential and a linearly relationship with the oxygen concentration. The introduced nitrogen also narrowed the explosive limits. The fuel inertization point is 12.65%. A nonlinear regression formula with 4 variables was obtained, which can be used to quantitatively predict the maximum overpressure at various initial conditions. These results are useful for predicting the explosion pressures of gasoline-air mixtures at various conditions when direct measurements are difficult to achieve.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app