Add like
Add dislike
Add to saved papers

Orientation order and rotation mobility of nitroxide biradicals determined by quantitative simulation of EPR spectra.

The problem of quantitative numerical simulation of electron paramagnetic resonance (EPR) spectra of biradical probes in both isotropic and aligned media was solved for the first time. The models suitable for the description of the spectra of the probes, both in the rigid limit and in the presence of rotational motions, were developed and successfully applied to model systems. The simulation of EPR spectra allows obtaining the following information about the molecular structure and dynamics: the values of orientation order parameters, the type of rotation mobility and its quantitative characteristics, and the sign and value of the spin exchange constant of the biradical. Model systems used in this work include solutions of nitroxide biradicals in a viscous solvent (squalane) in the range of temperatures 100-370 K and in the aligned liquid crystal n-octylcyanobiphenyl (8CB, 100-298.5 K). Unexpectedly, it was found that in 8CB the main orientation axis of the biradical molecule is perpendicular to the longest molecular axis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app