Add like
Add dislike
Add to saved papers

Dual-Targeting Magnetic PLGA Nanoparticles for Codelivery of Paclitaxel and Curcumin for Brain Tumor Therapy.

Chemotherapy is one of the most important strategies for glioma treatment. However, the "impermeability" of the blood-brain barrier (BBB) impedes most chemotherapeutics from entering the brain, thereby rendering very few drugs suitable for glioma therapy, letting alone application of a combination of chemotherapeutics. Thereby, there is a pressing need to overcome the obstacles. A dual-targeting strategy was developed by a combination of magnetic guidance and transferrin receptor-binding peptide T7-mediated active targeting delivery. The T7-modified magnetic PLGA nanoparticle (NP) system was prepared with co-encapsulation of the hydrophobic magnetic nanoparticles and a combination of drugs (i.e., paclitaxel and curcumin) based on a "one-pot" process. The combined drugs yielded synergistic effects on inhibition of tumor growth via the mechanisms of apoptosis induction and cell cycle arrest, displaying significantly increased efficacy relative to the single use of each drug. Dual-targeting effects yielded a >10-fold increase in cellular uptake studies and a >5-fold enhancement in brain delivery compared to the nontargeting NPs. For the in vivo studies with an orthotopic glioma model, efficient brain accumulation was observed by using fluorescence imaging, synchrotron radiation X-ray imaging, and MRI. Furthermore, the antiglioma treatment efficacy of the delivery system was evaluated. With application of a magnetic field, this system exhibited enhanced treatment efficiency and reduced adverse effects. All mice bearing orthotopic glioma survived, compared to a 62.5% survival rate for the combination group receiving free drugs. This dual-targeting, co-delivery strategy provides a potential method for improving brain drug delivery and antiglioma treatment efficacy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app