Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Surface-bound bovine serum albumin carrier protein as present in recombinant cytokine preparations amplifies T helper 17 cell polarization.

Scientific Reports 2016 November 4
Understanding of T helper 17 lineage (TH17 ) polarization has been significantly promoted by cell culture experiments that reduce the complexity of the in vivo environment. We here investigated TH17 amplification by coating of cytokine preparations. Cytokine preparations coated to the surface compared to the same amount given in solution significantly enhanced TH17 polarization assessed by flow cytometry and interleukin (IL)-17A, IL-17F and RORγt mRNA expression. T cell proliferation and TH1 polarization were similarly enhanced while TREG polarization was impeded. TH17 amplification was replicated by coating the plate with low amounts of FCS or albumin as used as carrier protein for cytokines (0.5 μl 0.1%). It was unaltered by filtration, protein digestion and arylhydrocarbon receptor blockade, not replicated by LPS and independent of integrin stimulation. TH17 amplification required anti-CD3 stimulation and was T cell intrinsic. Supernatants of CD4+ cells polarized on coated cytokine preparations with carrier albumin conferred amplification to fresh splenocytes. Coating markedly elevated CD4+ IL-22 mRNA expression and IL-22 blockade significantly reduced TH17 amplification. Our data show TH17 amplification by coated albumin in the low amounts present in recombinant cytokine preparations. This unexpected adjuvant like effect underscores the need for controls also for temporal and spatial factors in cell culture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app