Add like
Add dislike
Add to saved papers

Biosynthesis of hydroxylated polybrominated diphenyl ethers and the correlation with photosynthetic pigments in the red alga Ceramium tenuicorne.

Phytochemistry 2017 January
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been identified in a variety of marine organisms from different trophic levels indicating a large spread in the environment. There is much evidence pointing towards natural production as the major source of these compounds in nature. However, much is still not known about the natural production of these compounds. Seasonal trend studies have shown large fluctuations in the levels of OH-PBDEs in Ceramium tenuicorne from the Baltic Sea. Yet, even though indications of stimuli that can induce the production of these compounds have been observed, none, neither internal nor external, has been assigned to be responsible for the recorded fluctuations. In the present study the possible relationship between the concentration of pigments and that of OH-PBDEs in C. tenuicorne has been addressed. Significant correlations were revealed between the concentrations of all OH-PBDEs quantified and the concentrations of both chlorophyll a and Σxanthophylls + carotenoids. All of which displayed a concentration peak in mid-July. The levels of OH-PBDEs may be linked to photosynthetic activity, and hence indirectly to photosynthetic pigments, via bromoperoxidase working as a scavenger for hydrogen peroxide formed during photosynthesis. Yet the large apparent investment in producing specific OH-PBDE congeners point towards an targeted production, with a more specific function than being a waste product of photosynthesis. The OH-PBDE congener pattern observed in this study is not agreeable with some currently accepted models for the biosynthesis of these compounds, and indicates a more selective route than previously considered in C. tenuicorne.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app