Add like
Add dislike
Add to saved papers

Gene expression profile in heat-shocked Holstein and Nelore oocytes and cumulus cells.

The present study determined the transcriptome profile in Nelore and Holstein oocytes subjected to heat shock during IVM and the mRNA abundance of selected candidate genes in Nelore and Holstein heat-shocked oocytes and cumulus cells (CC). Holstein and Nelore cows were subjected to in vivo follicle aspiration. Cumulus-oocyte complexes were assigned to control (38.5°C, 22h) or heat shock (41°C for 12h, followed by 38.5°C for 10h) treatment during IVM. Denuded oocytes were subjected to bovine microarray analysis. Transcriptome analysis demonstrated 127, nine and six genes were differentially expressed between breed, temperature and the breed×temperature interaction respectively. Selected differentially expressed genes were evaluated by real-time polymerase chain reaction in oocytes and respective CC. The molecular motor kinesin family member 3A (KIF3A) was upregulated in Holstein oocytes, whereas the pro-apoptotic gene death-associated protein (DAP) and the membrane trafficking gene DENN/MADD domain containing 3 (DENND3) were downregulated in Holstein oocytes. Nelore CC showed increased transcript abundance for tight junction claudin 11 (CLDN11), whereas Holstein CC showed increased transcript abundance for antioxidant metallothionein 1E (MT1E) . Moreover, heat shock downregulated antioxidant MT1E mRNA expression in CC. In conclusion, oocyte transcriptome analysis indicated a strong difference between breeds involving organisation and cell death. In CC, both breed and temperature affected mRNA abundance, involving cellular organisation and oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app