Add like
Add dislike
Add to saved papers

Heterozygous Inactivation of the Nuclear Receptor PXR/NR1I2 in a Patient With Anabolic Steroid-Induced Intrahepatic Cholestasis.

Hepatitis Monthly 2016 August
INTRODUCTION: The incidence of liver damage due to steroid consumption is increasing due to the omnipresence of the idealized body image and the widespread availability of drugs via the Internet. The genetic factors underlying individual susceptibility are not presently known.

CASE PRESENTATION: A male patient developed cholestatic liver injury two weeks after a two-month course of anabolic steroids. Next-generation sequencing (NGS) of 24 cholestasis-related genes revealed a heterozygous two-basepair deletion in exon 1 of the pregnane X receptor gene (PXR). Serum bile salt levels showed marked imbalances, strongly resembling the changes observed in patients with biliary obstruction.

CONCLUSIONS: This case of PXR haploinsufficiency reveals transcriptional regulatory functions activated in the liver under xenobiotic stress by steroids, which appear to require two functional copies of the nuclear receptor gene. Deranged bile salt levels outline the central role of PXR in bile acid synthesis, modification, and export.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app