Add like
Add dislike
Add to saved papers

Plasma Phosphatidylcholines Fatty Acids in Men with Squamous Cell Esophageal Cancer: Chemoradiotherapy Improves Abnormal Profile.

BACKGROUND Abnormal metabolism of fatty acids (FA) is considered to play a role in human cancers, including esophageal cancer (EC). Nevertheless, there have been only a few studies dealing with the influence of the chemotherapy or radiotherapy on the plasma FA profiles. In this work we compared FA in plasma phosphatidylcholine (PC) of the patients with squamous EC and healthy subjects and investigated changes in the FA spectrum during neoadjuvant chemoradiotherapy (CRT). MATERIAL AND METHODS Forty-two men with squamous EC were compared with age-matched healthy controls. The EC group was subjected to concurrent neoadjuvant CRT. We analyzed FA in plasma PC before and after CRT. RESULTS The EC group was characterized by increased levels of both saturated and monounsaturated FA, associated with an increased index of SCD1 (stearoyl-CoA desaturase-1). Moreover, decreased levels of linoleic acid and total polyunsaturated FA (PUFA) n-6 were found in EC patients. The CRT was accompanied by increased docosahexaenoic acid and total PUFA n-3 content in plasma PC, concurrently with the decrease of estimated activity of SCD1. CONCLUSIONS We found that patients with EC had altered FA profile in plasma PC, which could be related to abnormal FA metabolism in cancer (e.g., altered synthesis de novo, b-oxidation, desaturation, and elongation). The described changes in FA profiles during CRT could be involved in favorable functioning of CRT. Further studies investigating the plasma FA compositions and their changes due to CRT in EC patients are warranted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app