Journal Article
Research Support, N.I.H., Extramural
Review
Add like
Add dislike
Add to saved papers

Carbapenems against Mycobacterium tuberculosis: a review of the evidence.

Carbapenems, a more recent β-lactam class, represent a unique anti-tuberculosis option, as emerging evidence demonstrates that they target the Mycobacterium tuberculosis cell wall and β-lactamase. This provides a potentially new agent against M. tuberculosis, in particular for multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB), where options are limited. In this review, we examine the current evidence on the activity of carbapenems against M. tuberculosis. The predominance of work is in vitro, and suggests that carbapenems kill M. tuberculosis at least in the active phase, with possible greater potency with the addition of a β-lactamase inhibitor. The few in vivo and clinical studies suggest that there are benefits and that they are generally tolerated, although the variability in duration, dosing, and background regimen and lack of pharmacokinetic analyses limit interpretation of efficacy. We outline further areas of research to better understand the role of carbapenems to add a needed new agent to the treatment of MDR- and XDR-TB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app