Add like
Add dislike
Add to saved papers

Bioinformatic Analysis of DNA Methylation in Neural Progenitor Cell Models of Alcohol Abuse.

Several recent publications sought to investigate the effects of ethanol treatment on models of central nervous system development, specifically through changes in DNA methylation. Regulation of DNA methylation causes a long-lasting, epigenetic change in the capacity of the genome to respond to developmental or metabolic stimuli. Changes in technologies for quantifying DNA methylation have increased the ability to identify and interpret potential effects of ethanol. Here, we review these recent studies in order to evaluate the detection technologies and bioinformatic analyses. Our evaluation finds that whole- or targeted-genome sequencing combined with bisulfite conversion of unmethylated G to U residues is now the standard for assessing genome-wide effects, and specific differentially methylated regions can be validated by one of several widely-available techniques. The acceptance of these technologies should help understand how ethanol leads to life-long developmental or behavioral deficits, and, perhaps, suggest therapies to reverse these effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app