Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of polyelectrolyte size on multilayer conformation and dynamics at different temperatures and salt concentrations.

Polyelectrolyte bilayers, which consist of poly-l-lysine (PLL) and hyaluronic acid (HA) were simulated with lipid membranes at different temperatures and ion concentrations. Starting with the sequential deposition of PLL and HA above the membrane surface, PLL and HA become completely mixed, leading to the formation of stable bilayers. PLL/HA bilayers are thicker at higher salt concentration because of weakened electrostatic interactions between PLLs and membrane lipids, in agreement with experiments. This salt effect decreases as PLL size increases. Also, bilayers become thinner at higher temperature because of the increased surface area of membrane. In particular, regardless of temperature and salt concentration, larger PLLs induce thicker bilayers, although larger PLLs have lower diffusivities than do smaller ones. Bilayers with larger PLLs show larger vacancy (more water) inside the bilayer, indicating that larger PLLs are less densely stacked on membrane surface than do smaller ones and thus form the thicker bilayer. These findings show the lower diffusivity of larger polyelectrolytes, which supports the experimental observation regarding the restricted diffusion of large polymers, and also imply the dependence of bilayer thickness on the polymer size.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app