Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dynamics of liquid-crystalline magnetic suspensions in a rotating magnetic field.

We theoretically study the dynamics of the orientational structure of a ferronematic liquid crystal with soft planar coupling between the director and the magnetization in a rotating magnetic field. We determine critical parameters characterizing the boundary between synchronous and asynchronous rotation regimes. We show that the magnetic impurity increases the stability threshold of an asynchronous rotation regime. The critical angular velocity, the angles of the director and the magnetization rotation in each regime of orientational structure rotation are found for rigid planar coupling. We obtain that in weak magnetic fields when the main mechanism of the field influence on a ferronematic liquid crystal is associated with the effect on the magnetic particles, the critical angular velocity is linearly dependent on the field strength, while in strong magnetic fields, when the influence of a field is determined by a diamagnetic mechanism, the critical velocity is quadratically dependent on the field strength.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app