Add like
Add dislike
Add to saved papers

Improved Pharmacokinetics Following PEGylation and Dimerization of a c(RGD-ACH-K) Conjugate Used for Tumor Positron Emission Tomography Imaging.

Improving the in vivo pharmacokinetics (PK) of positron emission tomography (PET) radiotracers is of critical importance to tumor diagnosis and therapy. In the case of peptide-based radiotracers, the modification and addition of a linker or spacer functional group often offer faster in vivo pharmacokinetic behavior. In this study, the authors introduced two new PEGlyated dimeric c(RGD-ACH-K) conjugates, in which an aminocyclohexane carboxylic acid (ACH) is inserted into the ring chain of the cyclic RGD peptides, with a common bifunctional chelator (DOTA or NOTA) used for labeling with radiometals (including (68)Ga and (64)Cu). The addition of polyethylene glycol (PEG) and dimerization of c(RGD-ACH-K) affected the PK of the renal system and the tumor-targeting ability, relative to unmodified molecule. As a result, both (64)Cu-DOTA-E[c(RGD-ACH-K)]2 (complex 1) and (64)Cu-NOTA-E[c(RGD-ACH-K)]2 (complex 2) exhibited specific tumor-targeting properties relative to tumor-blocking control group, most likely resulting from improved in vivo tumor imaging. The in vivo tumor-to-blood ratio of the (64)Cu(NOTA) complex shows better PET imaging than that of the (64)Cu(DOTA) complex, which should lead to improved dosimetry and increased suitability for noninvasive monitoring of tumor growth or tumor-targeted radionuclide therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app