Add like
Add dislike
Add to saved papers

SCCOHT tumors acquire chemoresistance and protection by interacting mesenchymal stroma/stem cells within the tumor microenvironment.

Chemotherapeutic drug testing of SCCOHT-1 and BIN-67 tumor cells revealed synergistic growth-inhibition of >95% in vitro with a combination of foretinib and FK228. Application of this drug combination in vivo in NODscid mice-induced SCCOHT-1GFP tumors was associated with ~6-fold reduction in tumor mass within 10 days, whereby synergistic effects of the two compounds remained undetectable compared to previous results with foretinib treatment alone. Histopathologic evaluation revealed a reduced vascularization and a lower amount of proliferating cells in the treated tumors. Surprisingly, a simultaneous significant accumulation of extracellular matrix structures with positive elastin-van Gieson staining was observed following foretinib/FK228 exposure. Expression analysis of treated animal tumors exhibited various changes including increased mouse transcript levels of elastin, laminin, and fibronectin. In parallel, markers for mesenchymal stroma/stem cells (MSC) including CD73 and CD90 were detectable in all mouse tumors suggesting a possible involvement of these cells in extracellular matrix restructure. Indeed, incubation of MSC with FK228 or foretinib/FK228 demonstrated morphologic alterations and enhanced expression of laminin and fibronectin. Moreover, a co-culture of MSC with lentiviral-labeled SCCOHT-1GFP cells contributed to protection of the tumor cells against FK228-mediated cytotoxicity. Furthermore, explant cultures of SCCOHT-1GFP-induced tumors acquired an increased resistance to FK228 and a combination of foretinib/FK228 in contrast to foretinib alone. Together, these data suggested that FK228-mediated extracellular matrix protein expression by MSC contributes to increased protection and enhanced resistance of SCCOHT tumors which could represent a more general mechanism of MSC during drug-induced alterations of a tumor microenvironment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app