Add like
Add dislike
Add to saved papers

Enhanced biodegradation of triclosan by means of gamma irradiation.

Chemosphere 2017 January
Triclosan is an antimicrobial agent which has been frequently detected in the environment. In this paper, the biodegradation of triclosan after radiation-induced advanced oxidation was investigated. The results show that the removal efficiency of triclosan in the combined irradiation and biological treatment process ranged from 88% to 97%, depending on the absorbed dose, while it was only 54% in the single biological treatment process. The removal efficiency of total organic carbon (TOC) was in the range of 53.1%,-59.2% at dose of 1-5 kGy in the combined irradiation and biological treatment process. In comparison, the removal efficiency of TOC in the single biological treatment process was 24.5%, suggesting that irradiation can enhance the mineralization of triclosan. The dechlorination efficiency of triclosan ranged from 48.6% to 78.4% at dose of 1-5 kGy. The intermediates of triclosan degradation were tentatively identified by LC-MS analysis and the possible degradation pathway was proposed. Based on the above results, the combined irradiation and biological treatment process could be an alternative process for treating triclosan-containing wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app