Add like
Add dislike
Add to saved papers

MiR-181a-5p regulates 3T3-L1 cell adipogenesis by targeting Smad7 and Tcf7l2.

MicroRNAs are highly conserved non-coding small RNAs participating in almost all kinds of biological activities. MiR-181a has been reported to be involved in the differentiation of porcine primary preadipocytes, but the profound effect of miR-181a-5p on 3T3-L1 adipocyte differentiation and proliferation is still unclear. In this study, we found that supplementation of miR-181a-5p in 3T3-L1 cells significantly promoted the adipogenesis and inhibited cell proliferation with increased expression of adipogenic marker genes including peroxisome proliferator-activated receptor gamma (Pparγ), CCAAT/enhancer-binding protein alpha (C/ebpα), fatty acid-binding protein 4 (Fabp4), and Adiponectin, accompanied by an accumulation of lipid droplet, an increase of triglyceride content, and a decrease of cell proliferation. Furthermore, by using the luciferase assay, Smad7 and Tcf7l2, two important members of transforming growth factor-β (TGFβ) and Wnt signaling pathway, were proven to be the direct target genes of miR-181a-5p. Moreover, supplementation of miR-181a-5p in 3T3-L1 cells altered the expressions of proteins involved in the TGFβ signaling pathway, such as TGFBR1, p-SMAD3, SMAD4, c-MYC, and p15. Taken together, these results indicate that miR-181a-5p promotes 3T3-L1 preadipocyte differentiation and adipogenesis through regulating TGFβ/Smad and Wnt signaling pathway by directly targeting Smad7 and Tcf7l2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app