Add like
Add dislike
Add to saved papers

Choroidal Structure in Children with Anisohypermetropic Amblyopia Determined by Binarization of Optical Coherence Tomographic Images.

PURPOSE: To compare the choroidal structure of the subfoveal area in the eyes of children with anisohypermetropic amblyopia to that of the fellow eyes and to age-matched controls using a binarization method of the images obtained by enhanced depth imaging optical coherence tomography (EDI-OCT).

METHODS: This study was performed at Nara Medical University Hospital, Tokushima University Hospital, and Kagoshima University Hospital, Japan. Forty amblyopic eyes with anisohypermetropic amblyopia and their fellow eyes (5.9 ± 2.1 years, mean ± standard deviation), and 103 age-matched controls (6.7 ± 2.4 years) were studied. The control eyes were divided into myopic, emmetropic, and hyperopic eyes. The total choroidal area, luminal area and stromal area of the subfoveal choroid were measured by the binarization method. The luminal/stromal ratio and the axial length of the amblyopic eyes were compared to that of the control eyes.

RESULTS: The total choroidal area in the amblyopic eyes was significantly larger than that of the fellow eyes (P = 0.005). The luminal/stromal ratio was significantly larger in the amblyopic eyes than that of the fellow eyes (P<0.001) and the control hyperopic eyes (P<0.001). There was a significant negative correlation between the luminal/stromal ratio and the axial length in the control eyes (r = -0.30, P = 0.001), but no significant correlation was found in the amblyopic eyes.

CONCLUSIONS: The choroidal structure of the amblyopic eyes was different from that of the fellow and the control hyperopic eyes. The choroidal changes are related to amblyopia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app