Add like
Add dislike
Add to saved papers

Biological effects of TiO 2 and CeO 2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum.

It is very important to have a good understanding of the biological effects of nanoparticles (NPs) on marine diatoms. In this study, the physiological and biochemical responses of a marine diatom Phaeodactylum tricornutum to titanium dioxide NPs (nano-TiO2 ) and cerium oxide NPs (nano-CeO2 ) were compared and evaluated using 96h growth tests in a batch-culture system. At 96h of exposure, the growth inhibition rate (IR, %) of P. tricornutum increased from 5.46 to 27.31% with increasing nano-TiO2 concentrations from 2.5 to 40mgL-1 . The maximum IR of 49.59% occurred in 40mgL-1 nano-TiO2 treatments at 48h of exposure. Growth of the diatom was increased in low nano-CeO2 treatments (≤5mgL-1 ), but was inhibited in high nano-CeO2 treatments (≥10mgL-1 ). Large aggregates of NPs were attached to the cells of P. tricornutum in 20 and 40mgL-1 nano-TiO2 and nano-CeO2 treatments. In addition, the effective quantum yields (ΦPSII ) of P. tricornutum in 40mgL-1 nano-TiO2 and nano-CeO2 treatments were 83.33 and 71.13% of that in the controls at 96h of exposure, respectively. Compared with that of the controls at 96h of exposure, chlorophyll a content, soluble sugar content, malondialdehyde (MDA) content, SOD and POD activities of P. tricornutum in 40mgL-1 nano-TiO2 and nano-CeO2 treatments increased by 57.56, 142.97, 373.25, 698.76, 204.85% and 21.43, 89.41, 194.97, 340.05, 502.86%, while soluble protein content decreased by 70.38 and 28.64%, respectively. These findings will be helpful to understand the effect mechanisms of NPs on marine organisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app