Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Study of the transdentinal diffusion of bioactive molecules.

In this work the mass transfer characteristics in a µ-tube that simulates a simplified dentinal tubule geometry are numerically investigated. The aim is to assess the key features that affect transdentinal diffusion of substances and consequently to define the necessary quantitative and qualitative issues related to a specific bioactive agent before its potential application in clinical practice. CFD simulations were performed in an S-shaped tapered micro-tube, while the code was validated using the non-intrusive optical measuring technique Laser Induced Fluorescence (LIF). As the phenomenon is one-dimensional, diffusion dominated and strongly dependent on the molecular size, the time needed for the concentration of released molecules to attain a required value can be controlled by their initial concentration. Thus, we propose a model, which is successfully verified by experimental data using a dentinal disc and which given the type of applied molecules and their critical pulpal concentration is able to estimate the initial concentration to be imposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app