Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Modulating Drug Release Rate from Partially Silica-Coated Bicellar Nanodisc by Incorporating PEGylated Phospholipid.

Bioconjugate Chemistry 2017 January 19
This article reports an effective method to regulate hydrophobic drug release rate from partially silica-coated bicellar nanodisc generated from proamphiphilic organoalkoxysilane and dihexanoylphosphatidylcholine by introducing different molar percentages of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG2000 (DSPE-PEG2000) into planar bilayers of hybrid bicelles. It was found that the drug release rate increased with increasing the molar percentages of DSPE-PEG2000, and 57.38%, 69.21%, 78.69%, 81.64%, and 82.23% of hydrophobic doxorubicin was released within 120 h from the nanodics incorporating with 0%, 2.5%, 5%, 10%, and 20% DSPE-PEG2000, respectively. Compared with the non-PEGylated nanodisc and free doxorubicin, the PEGylated nanodiscs showed good biocompatibility, high cellular uptake, and adhesion, as well as high local drug accumulation. In addition, both in vitro and in vivo results demonstrated significantly improved antitumor efficacy of the PEGylated nanodisc than its control groups. Thus, the PEGylated nanodisc with partial silica coating offers a facile and efficient strategy of drug delivery for chemotherapy with improved patient acceptance and compliance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app