Add like
Add dislike
Add to saved papers

Molecular identification and nanoremediation of microbial contaminants in algal systems using untreated wastewater.

Wastewater-algal biomass is a promising option to biofuel production. However, microbial contaminants constitute a substantial barrier to algal biofuel yield. A series of algal strains, Nannochloris oculata and Chlorella vulgaris samples (n = 30), were purchased from the University of Texas, and were used for both stock flask cultures and flat-panel vertical bioreactors. A number of media were used for isolation and differentiation of potential contaminants according to laboratory standards (CLSI). Conventional PCR amplification was performed followed by 16S rDNA sequencing to identify isolates at the species level. Nanotherapeutics involving a nanomicellar combination of natural chitosan and zinc oxide (CZNPs) were tested against the microbial lytic groups through Minimum Inhibitory Concentration (MIC) tests and Transmission Electronic Microscopy (TEM). Results indicated the presence of Pseudomonas spp., Bacillus pumilus/ safensis, Cellulosimicrobium cellulans, Micrococcus luteus and Staphylococcus epidermidis strains at a substantial level in the wastewater-fed algal reactors. TEM confirmed the effectiveness of CZNPs on the lytic group while the average MICs (mg/mL) detected for the strains, Pseudomonas spp, Micrococcus luteus, and Bacillus pumilus were 0.417, 3.33, and 1.458, respectively. Conclusively, CZNP antimicrobials proved to be effective as inhibitory agents against currently identified lytic microbial group, did not impact algae cells, and shows promise for in situ interventions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app