Add like
Add dislike
Add to saved papers

Identification and characterization of genes related to cellulolytic activity in basidiomycetes.

Enzymes produced by basidiomycetes that are involved in the cellulose degradation process, and their respective codifying genes, must be identified to facilitate the development of novel biotechnological strategies and applications in the agro-industry. The objective of this study was to identify prospective cellulase-producing genes and characterize their cellulolytic activity, in order to elucidate the potential biotechnological applications (with respect to vegetal residues) of basidiomycetes. The basidiomycete strains Lentinula edodes U8-1, Lentinus crinitus U9-1, and Schizophyllum commune U6-7 were analyzed in this study. The cellulolytic activities of these fungi were evaluated based on the halo formation in carboxymethyl cellulose culture medium after dyeing with Congo red. The presence of cellulase-codifying genes (cel7A, cel6B, cel3A, and egl) in these fungal strains was also evaluated. L. edodes and S. commune presented the highest cellulolytic halo to mycelial growth radius ratio, followed by L. crinitus. Four genes were amplified in the L. edodes strain, whereas three and one genes were isolated from L. crinitus and S. commune, respectively. The cel6B gene (L. edodes) presented the conserved domain glyco_hydro_6 and characterized as cellobiohydrolase gene. The results of this study contribute to the existing knowledge on cellulases in basidiomycetes, and serve as a basis for future studies on the expression of these genes and the characterization of the catalytic activity of these enzymes. This allows for better utilization of these fungi in degrading vegetal fibers from agro-industrial residues and in other biotechnological applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app