Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Electrodynamic study of YIG filters and resonators.

Scientific Reports 2016 October 5
Numerical solutions of coupled Maxwell and Landau-Lifshitz-Gilbert equations for a magnetized yttrium iron garnet (YIG) sphere acting as a one-stage filter are presented. The filter is analysed using finite-difference time-domain technique. Contrary to the state of the art, the study shows that the maximum electromagnetic power transmission through the YIG filter occurs at the frequency of the magnetic plasmon resonance with the effective permeability of the gyromagnetic medium μr  ≈ -2, and not at a ferromagnetic resonance frequency. Such a new understanding of the YIG filter operation, makes it one of the most commonly used single-negative plasmonic metamaterials. The frequency of maximum transmission is also found to weakly depend on the size of the YIG sphere. An analytic electromagnetic analysis of resonances in a YIG sphere is performed for circularly polarized electromagnetic fields. The YIG sphere is situated in a free space and in a large spherical cavity. The study demonstrates that both volume resonances and magnetic plasmon resonances can be solutions of the same transcendental equations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app