Add like
Add dislike
Add to saved papers

Comparison of the Physical and Chemical Properties of Laboratory and Field-Aged Biochars.

The long-term impact of biochar on soil properties and agronomic outcomes is influenced by changes in the physical and chemical properties of biochars that occur with time (aging) in soil environments. Fresh biochars, however, are often used in studies because aged biochars are generally unavailable. Therefore, a need exists to develop a method for rapid aging of biochars in the laboratory. The objectives of this study were to compare the physicochemical properties of fresh, laboratory-aged (LA), and field-aged (FA) (≥3 yr) biochars and to assess the appropriateness of a laboratory aging procedure that combines acidification, oxidation, and incubations as a mimic to field aging in neutral or acidic soil environments. Twenty-two biochars produced by fast and slow pyrolysis, and gasification techniques from five different biomass feedstocks (hardwood, corn stover, soybean stover, macadamia nut shells, and switchgrass) were studied. In general, both laboratory and field aging caused similar increases in ash-free volatile matter (% w/w), cation and anion exchange capacities, specific surface area, and modifications in oxygen-containing surface functional groups of the biochars. However, ash content increased for FA (18-195%) and decreased for LA (22-74%) biochars, and pH decreased to a greater extent for LA (2.8-6.7 units) than for FA (1.6-3.8 units) biochars. The results demonstrate that the proposed laboratory aging procedure is effective for predicting the direction of changes in biochar properties on field aging. However, in the future we recommend using a less aggressive acid treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app