Add like
Add dislike
Add to saved papers

Long Noncoding RNA miR210HG as a Potential Biomarker for the Diagnosis of Glioma.

BACKGROUND: Glioma remains a diagnostic challenge because of its variable clinical presentation and a lack of reliable screening tools. Long noncoding RNAs (lncRNAs) regulate gene function in a wide range of pathophysiological processes and are therefore emerging biomarkers for prostate cancer, hepatic cancer, and other tumor diseases. However, the effective use of lncRNAs as biomarkers for the diagnosis of glioma remains unproven.

METHODS: This study included 42 glioma patients and 10 healthy controls. lncRNA and mRNA microarray chips were used to identify dysregulated lncRNAs in tumor tissue and tumor-adjacent normal tissue, and SYBR Green-based miRNA quantitative real-time reverse transcription polymerase chain reactions were used to validate upregulated lncRNAs. A receiver operating characteristic curve analysis was conducted to evaluate the diagnostic accuracy of the lncRNA identified as the candidate biomarker.

RESULTS: miR210HG levels were significantly higher in tumor tissue than in tumor-adjacent normal tissue in participating glioma patients. Serum miR210HG levels were also significantly higher in glioma patients than in healthy controls. The receiver operating characteristic curve showed that serum miR210HG was a specific diagnostic predictor of acute pulmonary embolism with an area under the curve of 0.8323 (95% confidence interval, 0.7347 to 0.9299, p < 0.001).

CONCLUSION: Our findings indicate that miR210HG could be an important biomarker for the diagnosis of glioma, and, as such, large-scale investigations are urgently needed to pave the way from basic research to clinical use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app