Add like
Add dislike
Add to saved papers

Comparative effects of torasemide and furosemide on gap junction proteins and cardiac fibrosis in a rat model of dilated cardiomyopathy.

BioFactors 2017 March
Cardiac fibrosis is the major hallmark of adverse cardiac remodeling in chronic heart failure (CHF) and its therapeutic targeting might help against cardiac dysfunction during chronic conditions. Diuretic agents are potentially useful in these cases, but their effects on the cardiac fibrosis pathogenesis are yet to be identified. This study was designed to identify and compare the effects of diuretic drugs torasemide and furosemide on cardiac fibrosis in a rat model of dilated cardiomyopathy induced by porcine cardiac myosin mediated experimental autoimmune myocarditis. Gap junction proteins, connexin-43 and N-cadherin, expressions were downregulated in the hearts of CHF rats, while torasemide treatment has upregulated their expression. Western blotting and immunohistochemical analysis for various cardiac fibrosis related proteins as well as histopathological studies have shown that both drugs have potential anti-fibrotic effects. Among them, torasemide has superior efficacy in offering protection against adverse cardiac remodeling in the selected rat model of dilated cardiomyopathy. In conclusion, torasemide treatment has potential anti-fibrotic effect in the hearts of CHF rats, possibly via improving the gap junction proteins expression and thereby improving the cell-cell interaction in the heart. © 2016 BioFactors, 43(2):187-194, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app