Add like
Add dislike
Add to saved papers

Microfluidic synthesis of multifunctional liposomes for tumour targeting.

Nanotechnology has started a new era in engineering multifunctional nanoparticles for diagnosis and therapeutics by incorporating therapeutic drugs, targeting ligands, stimuli-responsive release and imaging molecules. However, more functionality requires more complex synthesis processes, resulting in poor reproducibility, low yield and high production cost, hence difficulties in clinical translation. Herein we report a one-step microfluidic method for making multifunctional liposomes. Three formulations were prepared using this simple method, including plain liposomes, PEGylated liposomes and folic acid functionalised liposomes, all with a fluorescence dye encapsulated for imaging. The size and surface properties of these liposomes can be precisely controlled by simply tuning the flow rate ratio and the ratio of the lipids to PEGylated lipid (DSPE-PEG2000) and to the DSPE-PEG2000-Folate, respectively. The synthesised liposomes remained stable under mimic serum conditions. Compared to the plain liposomes and PEGylated liposomes, the targeted folic acid functionalised liposomes exhibited enhanced cellular uptake by the FA receptor positive SKOV3 cells, but not the negative MCF7 cells, and this enhanced uptake could be inhibited by adding excess free folic acid, indicating high specificity of FA ligand-receptor endocytosis. Further evaluation using the 3D tumour spheroid model also showed higher internalisation of the targeted liposome formulation in comparison with the PEGylated one. To the best of our knowledge, this work demonstrates for the first time the versatility of this microfluidic method for making different liposome formulations in a single step, their superior physicochemical properties as well as the enhanced cellular uptake and tumour spheroid uptake of the targeted liposomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app