Add like
Add dislike
Add to saved papers

Knockdown of RPL9 expression inhibits colorectal carcinoma growth via the inactivation of Id-1/NF-κB signaling axis.

Ribosomal protein L9 (RPL9), a component of the 60S subunit for protein synthesis, is upregulated in human colorectal cancer. In the present study, we investigated whether RPL9 gained extraribosomal function during tumorigenesis and whether targeting of RPL9 with small interfering (si) RNA could alter the course of colorectal cancer progression. Our results showed that siRNA knockdown of RPL9 suppresses colorectal cancer (CRC) cell growth and long-term colony formation through an increase in sub-G1 cell population and a strong induction of apoptotic cell death. To obtain insights into the molecular changes in response to RPL9 knockdown, global changes in gene expression were examined using RNA sequencing. It revealed that RPL9-specific knockdown led to dysregulation of 918 genes in HCT116 and 3178 genes in HT29 cells. Among these, 296 genes showed same directional regulation (128 upregulated and 168 downregulated genes) and were considered as a common RPL9 knockdown signature. Particularly, we found through a network analysis that Id-1, which is functionally associated with activation of NF-κB and cell survival, was commonly downregulated. Subsequent western blot analysis affirmed that RPL9 silencing induced the decrease in the levels of Id-1 and phosphorylated IκBα in both HCT116 and HT29 cells. Also, the same condition decreased the levels of PARP-1 and pro-caspase-3, accelerating apoptosis. Furthermore, inhibition of RPL9 expression significantly suppressed the growth of human CRC xenografts in nude mice. These findings indicate that the function of RPL9 is correlated with Id-1/NF-κB signaling axis and suggest that targeting RPL9 could be an attractive option for molecular therapy of colorectal cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app