Add like
Add dislike
Add to saved papers

Hierarchical Ternary Carbide Nanoparticle/Carbon Nanotube-Inserted N-Doped Carbon Concave-Polyhedrons for Efficient Lithium and Sodium Storage.

Here, we report a hierarchical Co3 ZnC/carbon nanotube-inserted nitrogen-doped carbon concave-polyhedrons synthesized by direct pyrolysis of bimetallic zeolitic imidazolate framework precursors under a flow of Ar/H2 and subsequent calcination for both high-performance rechargeable Li-ion and Na-ion batteries. In this structure, Co3 ZnC nanoparticles were homogeneously distributed in in situ growth carbon nanotube-inserted nitrogen-doped carbon concave-polyhedrons. Such a hierarchical structure offers a synergistic effect to withstand the volume variation and inhibit the aggregation of Co3 ZnC nanoparticles during long-term cycles. Meanwhile, the nitrogen-doped carbon and carbon nanotubes in the hierarchical Co3 ZnC/carbon composite offer fast electron transportation to achieve excellent rate capability. As anode of Li-ion batteries, the electrode delivered a high reversible capacity (∼800 mA h/g at 0.5 A/g), outstanding high-rate capacity (408 mA h/g at 5.0 A/g), and long-term cycling performance (585 mA h/g after 1500 cycles at 2.0 A/g). In Na-ion batteries, the Co3 ZnC/carbon composite maintains a stable capacity of 386 mA h/g at 1.0 A/g without obvious decay over 750 cycles and a superior rate capability (∼500, 448, and 415 mA h/g at 0.2, 0.5, and 1.0 A/g, respectively).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app