Add like
Add dislike
Add to saved papers

ATPase activity of Plasmodium falciparum MLH is inhibited by DNA-interacting ligands and dsRNAs of MLH along with UvrD curtail malaria parasite growth.

Protoplasma 2017 May
Malaria caused by Plasmodium falciparum is the major disease burden all over the world. Recently, the situation has deteriorated because the malarial parasites are becoming progressively more resistant to numerous commonly used antimalarial drugs. Thus, there is a critical requirement to find other means to restrict and eliminate malaria. The mismatch repair (MMR) machinery of parasite is quite unique in several ways, and it can be exploited for finding new drug targets. MutL homolog (MLH) is one of the major components of MMR machinery, and along with UvrD, it helps in unwinding the DNA. We have screened several DNA-interacting ligands for their effect on intrinsic ATPase activity of PfMLH protein. This screening suggested that several ligands such as daunorubicin, etoposide, ethidium bromide, netropsin, and nogalamycin are inhibitors of the ATPase activity of PfMLH, and their apparent IC50 values range from 2.1 to 9.35 μM. In the presence of nogalamycin and netropsin, the effect was significant because in their presence, the V max value dropped from 1.024 μM of hydrolyzed ATP/min to 0.596 and 0.643 μM of hydrolyzed ATP/min, respectively. The effect of double-stranded RNAs of PfMLH and PfUvrD on growth of P. falciparum 3D7 strain was studied. The parasite growth was significantly inhibited suggesting that these components belonging to MMR pathway are crucial for the survival of the parasite.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app