Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Conformational and electrostatic analysis of S N 1 donor analogue glycomimetic inhibitors of ST3Gal-I mammalian sialyltransferase.

Mammalian sialyltransferases play a role in the metastasis of various cancers in humans. Inhibitors of these enzymes will in principle be able to directly inhibit aberrant sialylation in cancer. Inhibitors of ST3Gal-I resembling the donor component of SN 1 Transition State structures were previously evaluated as part of a kinetics study. Here, using classical dynamics simulations and free energy perturbation calculations, we rationalize the performance of three of these donor analogue ST3Gal-I enzyme inhibitors. We find to inhibit the mammalian ST3Gal-I enzyme a donor analogue requires configurationally limited functionality. This is mediated by the binding of the inhibitor to the enzyme. The inhibitor's ability to interact with Y194 and T272 through a charged group such as a carboxylate is especially important. Furthermore, a conformational rigid form approximating the donor substrate is central. Here this is achieved by an intramolecular hydrogen bond formed between the carboxylate group and one of the ribose hydroxyl groups of the cytidine monophosphate (CMP) leaving group. This intramolecular interaction results in the donor substrate conformer complimenting the form of the catalytic binding site. Finally the carboxylate charge is essential for electrostatic pairing with the binding site. Substituting this group for an alcohol or amide results in severe weakening of the ligand binding. The carboxylate thus proves an to be an irreplaceable functional group and an essential pharmacophore.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app