Add like
Add dislike
Add to saved papers

Determining the optimal developmental stages of Xenopus laevis for initiating exposures to chemicals for sensitively detecting their feminizing effects on gonadal differentiation.

Aquatic Toxicology 2016 October
Xenopus laevis is an important model for detecting feminizing effects of endocrine disrupting chemicals (EDCs) on amphibians because its genetic males can be induced to phenotypic females by estrogenic chemicals. It is crucial that chemical exposures begin at sensitive developmental stages for gonadal sex-reversal in X. laevis. To determine the optimal stages for initiating exposures, we investigated gonadal sex-reversal induced by low concentrations of 17α-ethinylestradiol (EE2) when exposures were initiated at different stages (3/4, 45/46, 48 and 50) until stage 58. We found that 0.1nM EE2 resulted in 85%, 86%, 43%, and 19% intersex, whereas 1nM EE2 caused 77%, 81%, 17%, and 8% phenotypic females, when genetic male tadpoles were exposed from stages 3/4, 45/46, 48 and 50, respectively. The data show the sensitivity of X. laevis gonads to EE2 at stages 45/46 is similar with that at stages 3/4, but the sensitivity decreases at stage 48 and stage 50, displaying a developmental stage-dependent manner. In another experiment using the offspring of another pair of frogs, we confirmed high sensitivity of X. laevis gonads at stages 45/46 to low concentrations of EE2. Considering that stages 45/46 tadpoles are easier to manipulate and have higher survival rates than earlier embryos, we propose that stages 45/46 are the optimal stages for initiating exposure for detecting feminizing effects of EDCs on gonadal differentiation in X. laevis. The developmental stages for initiating exposures we determined will guarantee the high sensitivity for detecting feminizing effects of EDCs with low estrogenic activities on gonadal differentiation in X. laevis. Also, our study suggests that gonadal differentiation in X. laevis possibly begins at stages 45/46, but not at later stages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app