Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Inhibitory Effect of Furanic and Phenolic Compounds on Exoelectrogenesis in a Microbial Electrolysis Cell Bioanode.

The objective of this study was to systematically investigate the inhibitory effect of furfural (FF), 5-hydroxymethylfurfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA), which are problematic lignocellulose-derived byproducts, on exoelectrogenesis in the bioanode of a microbial electrolysis cell. The five compound mixture at an initial total concentration range from 0.8 to 8.0 g/L resulted in an up to 91% current decrease as a result of exoelectrogenesis inhibition; fermentative, nonexoelectrogenic biotransformation pathways of the five compounds were not affected. Furthermore, the parent compounds at a high concentration, as opposed to their biotransformation products, were responsible for the observed inhibition. All five parent compounds contributed to the observed inhibition of the mixture. The IC50 (i.e., concentration resulting in 50% current decrease) of individually tested parent compounds was 2.7 g/L for FF, 3.0 g/L for HMF, 1.9 g/L for SA, 2.1 g/L for VA and 2.0 g/L for HBA. However, the parent compounds, when tested below their respective noninhibitory concentration, jointly resulted in significant inhibition as a mixture. Catechol and phenol, which were persistent biotransformation products, inhibited exoelectrogenesis only at high concentrations, but to a lesser extent than the parent compounds. Exoelectrogenesis recovery from inhibition by all compounds was observed at different rates, with the exception of catechol, which resulted in irreversible inhibition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app