Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Competitive exclusion in a multi-strain immuno-epidemiological influenza model with environmental transmission.

In this paper, a multi-strain model that links immunological and epidemiological dynamics across scales is formulated. On the within-host scale, the n strains eliminate each other with the strain having the largest immunological reproduction number persisting. However, on the population scale, we extend the competitive exclusion principle to a multi-strain model of SI-type for the dynamics of highly pathogenic flu in poultry that incorporates both the infection age of infectious individuals and biological age of pathogen in the environment. The two models are linked through the age-since-infection structure of the epidemiological variables. In addition the between-host transmission rate, the shedding rate of individuals infected by strain j and the disease-induced death rate depend on the within-host viral load. The immunological reproduction numbers [Formula: see text] and the epidemiological reproduction numbers [Formula: see text] are computed. By constructing a suitable Lyapunov function, the global stability of the infection-free equilibrium in the system is obtained if all reproduction numbers are smaller or equal to one. If [Formula: see text], the reproduction number of strain j is larger than one, then a single-strain equilibrium, corresponding to strain j exists. This single-strain equilibrium is globally stable whenever [Formula: see text] and [Formula: see text] is the unique maximal reproduction number and all of the reproduction numbers are distinct. That is, the strain with the maximal basic reproduction number competitively excludes all other strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app