Add like
Add dislike
Add to saved papers

ATP-Dependent Electron Activation Module of Benzoyl-Coenzyme A Reductase from the Hyperthermophilic Archaeon Ferroglobus placidus.

Biochemistry 2016 October 5
The class I benzoyl-coenzyme A (BzCoA) reductases (BCRs) are key enzymes in the anaerobic degradation of aromatic compounds that catalyze the ATP-dependent dearomatization of their substrate to a cyclic dienoyl-CoA. The phylogenetically distinct Thauera- and Azoarcus-type BCR subclasses are iron-sulfur enzymes and consist of an ATP-hydrolyzing electron activation module and a BzCoA reduction module. More than 20 years after their initial identification, all biochemical information about class I BCRs derives from studies of the wild-type enzyme from the denitrifying bacterium Thauera aromatica (BCRTaro). Here, we describe the first heterologous production and purification of the ATP-hydrolyzing, electron-activating module of an Azoarcus-type BCR from the hyperthermophilic archaeon Ferroglobus placidus, BzdPQFpla. The Fe content, UV/vis spectroscopic, and Mössbauer spectroscopic properties of the (57)Fe-enriched enzyme clearly identified a [4Fe-4S](+/2+) cluster with a redox potential (E°') of -376 mV as a cofactor. ATP hydrolysis is required to overcome a redox barrier of ∼250 mV for stoichiometric electron transfer from the [4Fe-4S](+) cluster to the substrate benzene ring (E°'BzCoA/dienoyl-CoA = -622 mV). BzdPQFpla exhibited ATPase activity (15 nmol min(-1) mg(-1); Km = 270 μM) at 75 °C, which was relatively stable in air in contrast to BCRTaro. The results obtained revealed high levels of functional and molecular similarity between Azoarcus-type BCRs and the homologous ATP-dependent activator components of 2-hydroxyacyl-CoA dehydratases involved in amino acid fermentations. Insights into the diversity and evolution of ATP-dependent electron-activating modules for catalytic or stoichiometric low-potential electron transfer processes are presented.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app