Add like
Add dislike
Add to saved papers

Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge.

Dried raw sludge was pyrolyzed at temperatures ranging from 400 to 600°C at the increase of 50°C intervals to investigate the influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochar derived from municipal sewage sludge. The sludge biochar yield decreased significantly with increasing pyrolysis temperature but the pH, ash content and specific surface area increased. Conversion of sludge to biochar markedly decreased the H/C and N/C ratios. FT-IR analysis confirmed a dramatic depletion of H and N and a higher degree of aromatic condensation in process of biochar formation at higher temperatures. The total concentrations of Cu, Zn, Pb, Cr, Mn, and Ni increased with conversion of sludge to biochar and increasing pyrolysis temperature. However, using BCR sequential extraction and analysis, it was found that most of the heavy metals existed in the oxizable and residual forms after pyrolysis, especially at 600°C, resulting in a significant reduction in their bioavailability, leading to a very low environmental risk of the biochar. The present study indicates pyrolysis is a promising sludge treatment method for heavy metals immobilization in biochar, and highlights the potential to minimize the harmful effects of biochar by controlling pyrolysis temperature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app