Add like
Add dislike
Add to saved papers

MicroRNA-7 regulates IL-1β-induced extracellular matrix degeneration by targeting GDF5 in human nucleus pulposus cells.

The precise role of interleukin-1 beta (IL-1β)-induced extracellular matrix degeneration in the pathogenesis of intervertebral disc degeneration (IDD) is currently unknown. Recent evidence has revealed that microRNAs (miRNAs) are associated with IDD, but their function in the extracellular matrix degradation of nucleus pulposus (NP) tissues is also poorly understood. The aim of this study was to evaluate the expression and functional role of miR-7 in IL-1β-induced disc degeneration. The expression level of miR-7 was investigated in degenerative NP tissues and in IL-1β-induced NP cells using quantitative reverse transcription-polymerase chain reaction amplification analysis. A dual-luciferase reporter assay was then utilized to determine whether growth differentiation factor 5 (GDF5) is a target of miR-7. Finally, mRNA and protein levels of known matrix components and of matrix degradation enzymes were determined to elucidate the function of miR-7 in IL-1β-induced disc degeneration. In this study, we found that miR-7 is highly expressed in human degenerative NP tissues and in IL-1β stimulated NP cells compared to normal controls. We also determined that GDF5 was a target of miR-7. Functional analysis showed that the overexpression of miR-7 significantly enhanced the IL-1β-induced extracellular matrix degeneration, whereas inhibition of miR-7 function by antagomiR-7 prevented NP cell detrimental catabolic changes in response to IL-1β. Additionally, the prevention of IL-1β-induced NP extracellular matrix degeneration by miR-7 silencing was attenuated by GDF5 siRNA. These findings suggest that miR-7 contributes to an impaired ECM in intervertebral discs through targeting GDF5 and miR-7 might therefore represent a novel therapeutic target for the prevention of IDD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app