Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights.

Carbon-based functional nanomaterials have attracted immense scientific interest from many disciplines and, due to their extraordinary properties, have offered tremendous potential in a diverse range of applications. Among the different carbon nanomaterials, graphene is one of the newest and is considered the most important. Graphene, a monolayer material composed of sp2 -hybridized carbon atoms hexagonally arranged in a two-dimensional structure, can be easily functionalized by chemical modification. Functionalized graphene and its derivatives have been used in diverse nano-biotechnological applications, such as in environmental engineering, biomedicine, and biotechnology. However, the prospective use of graphene-related materials in a biological context requires a detailed comprehension of these materials, which is essential for expanding their biomedical applications in the future. In recent years, the number of biological studies involving graphene-related nanomaterials has rapidly increased. These studies have documented the effects of the biological interactions between graphene-related materials and different organizational levels of living systems, ranging from biomolecules to animals. In the present review, we will summarize the recent progress in understanding mainly the interactions between graphene and cells. The impact of graphene on intracellular components, and especially the uptake and transport of graphene by cells, will be discussed in detail.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app