Read by QxMD icon Read

Advanced Drug Delivery Reviews

I Nardin, S Köllner
Oral administration is the most accepted and favored route as various side effects such as fear, pain and risk of infections can be avoided resulting in a comparatively high patient compliance. However, from the industrial point of view the development of oral delivery systems is still challenging as various drugs are poorly soluble as well as slightly permeable leading to low bioavailability. As self-emulsifying drug delivery systems are able to incorporate both hydrophobic and hydrophilic drugs, these carrier systems have received more and more attention within the last years...
November 7, 2018: Advanced Drug Delivery Reviews
Sophie Pinel, Noémie Thomas, Cédric Boura, Muriel Barberi-Heyob
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor. Despite new knowledges on the genetic characteristics, conventional therapy for GBM, tumor resection followed by radiotherapy and chemotherapy using temozolomide is limited in efficacy due to high rate of recurrence. GBM is indeed one of the most complex and difficult to treat of any cancer mainly due to its highly invasive properties and the standard treatments are thus rarely curative. Major challenges in the treatment of GBM are the limitation of irreversible brain damage, the infiltrative part of the tumor which is the ultimate cause of recurrence, the difficulty of identifying tumor margins and disseminated tumor cells, and the transport across the blood-brain barrier in order to obtain a sufficient therapeutic effect...
November 7, 2018: Advanced Drug Delivery Reviews
Jelena Kolosnjaj-Tabi, Laure Gibot, Isabelle Fourquaux, Muriel Golzio, Marie-Pierre Rols
Electric fields are among physical stimuli that have revolutionized therapy. Occurring endogenously or exogenously, the electric field can be used as a trigger for controlled drug release from electroresponsive drug delivery systems, can stimulate wound healing and cell proliferation, may enhance endocytosis or guide stem cell differentiation. Electric field pulses may be applied to induce cell fusion, can increase the penetration of therapeutic agents into cells, or can be applied as a standalone therapy to ablate tumors...
November 7, 2018: Advanced Drug Delivery Reviews
Esther Cazares-Cortes, Sonia Cabana-Montenegro, Charlotte Boitard, Emilie Nehling, Nebewia Griffete, Jérôme Fresnais, Claire Wilhelm, Ali Abou-Hassan, Christine Ménager
Magnetic hyperthermia which exploits the heat generated by magnetic nanoparticles (MNPs) when exposed to an alternative magnetic field (AMF) is now in clinical trials for the treatment of cancers. However, this thermal therapy requires a high amount of MNPs in the tumor to be efficient. On the contrary the hot spot local effect refers to the use of specific temperature profile at the vicinity of nanoparticles for heating with minor to no long-range effect. This magneto-thermal effect can be exploited as a relevant external stimulus to temporally and spatially trigger a drug release...
November 7, 2018: Advanced Drug Delivery Reviews
Jianhua Liu, Thomas Lécuyer, Johanne Séguin, Nathalie Mignet, Daniel Scherman, Bruno Viana, Cyrille Richard
The development of probes for biomolecular imaging and diagnostics is a very active research area. Among the different imaging modalities, optics emerged since it is a noninvasive and cheap imaging technique allowing real time imaging. In vitro, this technique is very useful however in vivo, fluorescence suffers from low signal-to-noise ratio due to tissue autofluorescence under constant excitation. To address this limitation, novel types of optical nanoprobes are actually being developed and among them, persistent luminescence nanoparticles (PLNPs), with long lasting near-infrared (NIR) luminescence capability, allows doing optical imaging without constant excitation and so without autofluorescence...
November 7, 2018: Advanced Drug Delivery Reviews
A Bak, M Ashford, D J Brayden
Current treatments for intestinal diseases including inflammatory bowel diseases, irritable bowel syndrome, and colonic bacterial infections are typically small molecule oral dosage forms designed for systemic delivery. The intestinal permeability hurdle to achieve systemic delivery from oral formulations of macromolecules is challenging, but this drawback can be advantageous if an intestinal region is associated with the disease. There are some promising formulation approaches to release peptides, proteins, antibodies, antisense oligonucleotides, RNA, and probiotics in the colon to enable local delivery and efficacy...
October 22, 2018: Advanced Drug Delivery Reviews
Julia Rogal, Aline Zbinden, Katja Schenke-Layland, Peter Loskill
Diabetes mellitus (DM) ranks among the severest global health concerns of the 21st century. It encompasses a group of chronic disorders characterized by a dysregulated glucose metabolism, which arises as a consequence of progressive autoimmune destruction of pancreatic beta-cells (type 1 DM), or as a result of beta-cell dysfunction combined with systemic insulin resistance (type 2 DM). Human cohort studies have provided evidence of genetic and environmental contributions to DM; yet, these studies are mostly restricted to investigating statistical correlations between DM and certain risk factors...
October 22, 2018: Advanced Drug Delivery Reviews
María Moros, Javier Idiago-López, Laura Asín, Eduardo Moreno-Antolín, Lilianne Beola, Valeria Grazú, Raluca M Fratila, Lucía Gutiérrez, Jesús Martínez de la Fuente
Magnetic nanoparticles (MNPs) are promising tools for a wide array of biomedical applications. One of their most outstanding properties is the ability to generate heat when exposed to alternating magnetic fields, usually exploited in magnetic hyperthermia therapy of cancer. In this contribution, we provide a critical review of the use of MNPs and magnetic hyperthermia as drug release and gene expression triggers for cancer therapy. Several strategies for the release of chemotherapeutic drugs from thermo-responsive matrices are discussed, providing representative examples of their application at different levels (from proof of concept to in vivo applications)...
October 16, 2018: Advanced Drug Delivery Reviews
Sheikh Mohamed M, Srivani Veeranarayanan, Toru Maekawa, Sakthi Kumar D
Cancer is a highly intelligent system of cells, that works together with the body to thrive and subsequently overwhelm the host in order for its survival. Therefore, treatment regimens should be equally competent to outsmart these cells. Unfortunately, it is not the case with current therapeutic practices, the reason why it is still one of the most deadly adversaries and an imposing challenge to healthcare practitioners and researchers alike. With rapid nanotechnological interventions in the medical arena, the amalgamation of diagnostic and therapeutic functionalities into a single platform, theranostics provides a never before experienced hope of enhancing diagnostic accuracy and therapeutic efficiency...
October 12, 2018: Advanced Drug Delivery Reviews
Katarina D Kovacevic, James C Gilbert, Bernd Jilma
Aptamers are synthetic molecules structured as single-stranded DNA or RNA oligonucleotides that can be designed to mimic the functional properties of monoclonal antibodies. They bind to the target molecules (typically soluble or cell-bound proteins) with high affinity (with picomolar to low nanomolar range) and specificity, and therefore can be an alternative to therapeutic antibodies or peptide ligands. This paper reviews published data regarding pharmacokinetics, pharmacodynamics and safety of aptamers from preclinical and clinical studies...
October 12, 2018: Advanced Drug Delivery Reviews
Jihwan Son, Gawon Yi, Jihye Yoo, Changhee Park, Heebeom Koo, Hak Soo Choi
Nanoparticles (NPs) play a key role in nanomedicine in multimodal imaging, drug delivery and targeted therapy of human diseases. Consequently, due to the attractive properties of NPs including high stability, high payload, multifunctionality, design flexibility, and efficient delivery to target tissues, nanomedicine employs various types of NPs to enhance targeting and treatment efficacy. In this review, we primarily focus on light-responsive materials, such as fluorophores, photosensitizers, semiconducting polymers, carbon structures, gold particles, quantum dots, and upconversion crystals, for their biomedical applications...
October 12, 2018: Advanced Drug Delivery Reviews
Hai Doan Do, Brice Martin Couillaud, Bich-Thuy Doan, Yohann Corvis, Nathalie Mignet
Nucleic acids (NAs) have been considered as promising therapeutic agents for various types of diseases. However, their clinical applications still face many limitations due to their charge, high molecular weight, instability in biological environment and low levels of transfection. To overcome these drawbacks, therapeutic NAs should be carried in a stable nanocarrier, which can be viral or non-viral vectors, and released at specific target site. Various controllable gene release strategies are currently being evaluated with interesting results...
October 12, 2018: Advanced Drug Delivery Reviews
Alexandre Bordat, Tanguy Boissenot, Julien Nicolas, Nicolas Tsapis
Polymer nanocarriers allow drug encapsulation leading to fragile molecule protection from early degradation/metabolization, increased solubility of poorly soluble drugs and improved plasmatic half-life. However, efficiently controlling the drug release from nanocarriers is still challenging. Thermoresponsive polymers exhibiting either a lower critical solubility temperature (LCST) or an upper critical solubility temperature (UCST) in aqueous medium may be the key to build spatially and temporally controlled drug delivery systems...
October 11, 2018: Advanced Drug Delivery Reviews
Dingcheng Zhu, Sathi Roy, Ziyao Liu, Horst Weller, Wolfgang Parak, Neus Feliu
Tremendous efforts have been devoted to the development of future nanomedicines that can be specifically designed to incorporate responsive elements that undergo modification in structural properties upon external triggers. One potential use of such stimuli-responsive materials is to release encapsulated cargo upon excitation by an external trigger. Today, such stimuli-response materials allow for spatial and temporal tunability, which enables the controlled delivery of compounds in a specific and dose-dependent manner...
October 10, 2018: Advanced Drug Delivery Reviews
Caterina Brighi, Simon Puttick, Stephen Rose, Andrew K Whittaker
Despite significant improvements in the clinical management of glioblastoma, poor delivery of systemic therapies to the entire population of tumour cells remains one of the biggest challenges in the achievement of more effective treatments. On the one hand, the abnormal and dysfunctional tumour vascular network largely limits blood perfusion, resulting in an inhomogeneous delivery of drugs to the tumour. On the other hand, the presence of an intact blood-brain barrier (BBB) in certain regions of the tumour prevents chemotherapeutic drugs from permeating through the tumour vessels and reaching the diseased cells...
October 8, 2018: Advanced Drug Delivery Reviews
William C Zamboni, Janos Szebeni, Serguei V Kozlov, Andrew T Lucas, Joseph A Piscitelli, Marina A Dobrovolskaia
Nanotechnology provides many solutions to improve conventional drug delivery and has a unique niche in the areas related to the specific targeting of the immune system, such as immunotherapies and vaccines. Preclinical studies in this field rely heavily on the combination of in vitro and in vivo methods to assess the safety and efficacy of nanotechnology platforms, nanoparticle-formulated drugs, and vaccines. While certain types of toxicities can be evaluated in vitro and good in vitro-in vivo correlation has been demonstrated for such tests, animal studies are still needed to address complex biological questions and, therefore, provide a unique contribution to establishing nanoparticle safety and efficacy profiles...
September 28, 2018: Advanced Drug Delivery Reviews
Walhan Alshaer, Hervé Hillaireau, Elias Fattal
Aptamers are versatile nucleic acid-based macromolecules characterized by their high affinity and specificity to a specific target. Taking advantage of such binding properties, several aptamers have been selected to bind tumor biomarkers and have been used as targeting ligands for the functionalization of nanomedicines. Different functionalization methods have been used to link aptamers to the surface drug nanocarriers. The pre-clinical data of such nanomedicines overall show an enhanced and selective delivery of therapeutic payloads to cancer cells, thereby accelerating steps towards more effective therapeutic systems...
September 26, 2018: Advanced Drug Delivery Reviews
Austin P Veith, Kayla Henderson, Adrianne Spencer, Andrew D Sligar, Aaron B Baker
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing...
September 26, 2018: Advanced Drug Delivery Reviews
Kristin M Fabre, Louise Delsing, Ryan Hicks, Nicola Colclough, Damian C Crowther, Lorna Ewart
Microphysiological systems (MPS) may be able to provide the pharmaceutical industry models that can reflect human physiological responses to improve drug discovery and translational outcomes. With lack of efficacy being the primary cause for drug attrition, developing MPS disease models would help researchers identify novel targets, study mechanisms in more physiologically-relevant depth, screen for novel biomarkers and test/optimize various therapeutics (small molecules, nanoparticles and biologics). Furthermore, with advances in inducible pluripotent stem cell technology (iPSC), pharmaceutical companies can access cells from patients to help recreate specific disease phenotypes in MPS platforms...
September 22, 2018: Advanced Drug Delivery Reviews
Nicholas J Hunt, Peter A G McCourt, David G Le Couteur, Victoria C Cogger
Age-related changes in liver function have a significant impact on systemic aging and susceptibility to age-related diseases. Nutrient sensing pathways have emerged as important targets for the development of drugs that delay aging and the onset age-related diseases. This supports a central role for the hepatic regulation of metabolism in the association between nutrition and aging. Recently, a role for liver sinusoidal endothelial cells (LSECs) in the relationship between aging and metabolism has also been proposed...
September 21, 2018: Advanced Drug Delivery Reviews
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"